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1. Answer any two of the following questions:                                                                  (𝟐 × 𝟐 = 𝟒) 

a) Give an example of a function 𝑓:ℂ → ℂ which is continuous everywhere but nowhere 

differentiable. 

b) Define contour in complex plane. 

c) Suppose 𝐶 is the unit circle centered at origin. Then find the value of the integration 
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d) Define a complex entire function. 

e) Give an example of a complete metric space and an incomplete metric space on the interval 

(0,1) ⊂ ℝ. 

f) Show that the space ℚ is disconnected with respect to the usual metric. 

g) Let 𝑓: [0,1] → [0,1] be defined by 𝑓(𝑥) = 0 for 𝑥 ∈ ቂ0,
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Check whether 𝑓 is a contraction mapping under usual metric. 

h) State Banach fixed point theorem. 

 

2.  Answer any two of the following questions:                                                        (𝟓 × 𝟐 = 𝟏𝟎) 

a) (i) Suppose 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 2𝑖 is an entire function. Show that 𝑢 is constant.   

(ii) Suppose 𝑓 is an entire function satisfying the condition |𝑓(𝑧)| ≤
௭ర
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 for all |𝑧| > 1. Show that 

𝑓(𝑧) is a polynomial of degree atmost 3.                                                                                              (2+3) 



b) State and prove Cauchy’s integral theorem. 

c) (i) State Laurent’s theorem.        

(ii) Find the Laurent series of ଵ

௭మାଵ
 in the deleted neighbourhood of 𝑧 = 𝑖.         (2+3) 

 

d) (i) Let {𝑥} be a Cauchy sequence in a metric space having a convergent subsequence.  

Show that {𝑥} is convergent.  

(ii) Show that the space of all polynomials equipped with sup-metric is not complete.             (2+3)                                                

e) Prove that every sequentially compact metric space is compact. 

f) Show that continuous image of a compact set is compact. 

 

3.  Answer any two from either a) or b) :                                                                         (𝟑 × 𝟐 = 𝟔) 

a) (i) Show that a compact metric space is totally bounded.                      

(ii) For any set 𝐴 in a metric space, show that 𝑑𝑖𝑎𝑚 𝐴 =  𝑑𝑖𝑎𝑚𝐴 , 𝐴 denotes the closure of 𝐴. 

(iii) Give an example (with justification) of non-isometric homeomorphism. 

(iv) Let f be a piecewise continuous complex function on a contour 𝐶 of length 𝐿. If |𝑓(𝑧)| ≤ 𝑀 for 

all 𝑧 on 𝐶 (𝑀 is a non-negative constant), then show that ห∫ 𝑓(𝑧)𝑑𝑧


ห ≤ 𝑀𝐿. 

b) (i) Find the radius of convergence of the series      
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(ii) Show that for any polynomial 𝑝, 𝑝(ℂ) = ℂ. Does the converse hold? Support your answer. 

(iii) Let 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) be defined in a domain 𝐷 such that 𝑢 and 𝑣 have continuous 

partial derivatives that satisfy the Cauchy-Riemann equations for all points in 𝐷. Then show that 

𝑓(𝑧) is analytic in 𝐷. 

(iv) Evaluate the integral∫
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, where 𝐶: |𝑧 − 2𝑖| = 2 in positive sense. 
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