ACTIVITY CODE: 1903120021

B.Sc. 6th Semester (Honours) Examination, October 2020

Subject: Mathematics

Course ID: 62111

Course Code: SH/MTH /601/C-13

Course Title: Metric Spaces and Complex Analysis

Full Marks: 20

Time: 1 Hour

The figures in the margin indicate full marks

Notations and symbols have their usual meanings.

1. Answer any two of the following questions:

- a) Give an example of a function $f: \mathbb{C} \to \mathbb{C}$ which is continuous everywhere but nowhere differentiable.
- **b)** Define contour in complex plane.
- c) Suppose C is the unit circle centered at origin. Then find the value of the integration

$$\int_C \frac{e^z}{(z-2)} dz.$$

- d) Define a complex entire function.
- e) Give an example of a complete metric space and an incomplete metric space on the interval (0,1) ⊂ ℝ.
- f) Show that the space \mathbb{Q} is disconnected with respect to the usual metric.
- **g)** Let $f: [0,1] \to [0,1]$ be defined by f(x) = 0 for $x \in \left[0, \frac{1}{2}\right]$ and $f(x) = \frac{1}{2}$ for $x \in \left(\frac{1}{2}, 1\right]$. Check whether f is a contraction mapping under usual metric.
- h) State Banach fixed point theorem.

2. Answer any two of the following questions:

a) (i) Suppose f(x + iy) = u(x, y) + 2i is an entire function. Show that u is constant.

(ii) Suppose f is an entire function satisfying the condition $|f(z)| \le \frac{z^4}{\ln |z|}$ for all |z| > 1. Show that

f(z) is a polynomial of degree atmost 3.

 $(2 \times 2 = 4)$

 $(5 \times 2 = 10)$

(2+3)

- **b)** State and prove Cauchy's integral theorem.
- c) (i) State Laurent's theorem.

(ii) Find the Laurent series of
$$\frac{1}{z^2+1}$$
 in the deleted neighbourhood of $z = i$. (2+3)

- d) (i) Let {x_n} be a Cauchy sequence in a metric space having a convergent subsequence.
 Show that {x_n} is convergent.
 - (ii) Show that the space of all polynomials equipped with sup-metric is not complete. (2+3)
- e) Prove that every sequentially compact metric space is compact.
- f) Show that continuous image of a compact set is compact.

3. Answer *any two* from either a) or b): $(3 \times 2 = 6)$

- a) (i) Show that a compact metric space is totally bounded.
 - (ii) For any set A in a metric space, show that $diam A = diam \overline{A}$, \overline{A} denotes the closure of A.
 - (iii) Give an example (with justification) of non-isometric homeomorphism.
 - (iv) Let f be a piecewise continuous complex function on a contour C of length L. If $|f(z)| \le M$ for all z on C (M is a non-negative constant), then show that $\left|\int_{C} f(z)dz\right| \le ML$.
- **b)** (i) Find the radius of convergence of the series

$$\sum_{n=0}^{\infty} \frac{z^{3n}}{(3+i)^n}$$

(ii) Show that for any polynomial p, $p(\mathbb{C}) = \mathbb{C}$. Does the converse hold? Support your answer.

(iii) Let f(z) = u(x, y) + iv(x, y) be defined in a domain D such that u and v have continuous partial derivatives that satisfy the Cauchy-Riemann equations for all points in D. Then show that f(z) is analytic in D.

(iv) Evaluate the integral $\int_C \frac{1}{(z^2+9)^2} dz$, where C: |z-2i| = 2 in positive sense.

END