ACTIVITY CODE: 1903121021

B.Sc. 6th Semester (Honours) Examination, October 2020

Subject: Mathematics

Course ID: 62112

Course Code: SH/MTH/602/C-14

Course Title: Ring Theory and Linear Algebra II

Full Marks: 20

Time: 1 Hour

The figures in the margin indicate full marks

Notations and symbols have their usual meanings.

1. Answer any two from the following questions:

- a) Give an example of an Integral Domain which is not a Principal ideal domain (PID).
- **b)** State Eisenstein's Criterion for irreducibility of a polynomial in $\mathbb{Z}[x]$.
- c) In a commutative ring with 1, give an example of a prime element which is not irreducible.
- d) Define the dual space of a vector space V over a field F.
- e) Give an example of a linear operator whose characteristic polynomial and minimal polynomial are not equal.
- f) Show that the minimal polynomial of a square matrix is unique.
- g) Establish the law of parallelogram in an inner product space.
- h) In an inner product space, prove that an orthogonal set of non-zero vectors is linearly independent.

2. Answer any two from the following questions:

- a) In an integral domain, prove that any prime element is irreducible. Show that the converse of this result is not true.
 2+3=5
- **b)** State division algorithm for polynomial rings over a commutative ring with 1. Find the gcd of the polynomials $f(x) = x^4 + 3x^3 3x + 1$, $g(x) = x^3 + 3x^2 + x 2$ in $\mathbb{Q}[x]$. **1+4=5**
- c) Let V be a finite dimensional vector space over the field F. Let $B = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis for V. Show that there exists a unique dual basis B^* for the dual space V^* corresponding to B.

2×2=4

5×2=10

- d) Let $A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$. Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- e) Consider the vector space R³ over R equipped with the standard inner product. Applying Gram-Schmidt orthogonalization process, orthonormalize the following set of vectors: {(1,2, −2), (2,0,1), (1,1,0)}.
 5
- f) Let V be a finite dimensional inner product space and f be a linear functional on V. Then prove that there exists a unique vector β in V such that $f(\alpha) = \langle \alpha, \beta \rangle$ for all $\alpha \in V$. 5

3. Answer any two from either a) or b):

a) (i) Show that $\mathbb{Z}[x]$ is not a Principal ideal domain (PID) by exhibiting an ideal of $\mathbb{Z}[x]$ which is not a principal ideal.

3×2=6

(ii) Let T be a linear operator on a vector space V over F such that $T^2 = T$. Prove that T is diagonalizable.

(iii) Prove that Inner product function of an Inner product space is a continuous function. (iv) Let V be a complex or real inner product space. Then show that the induced norm satisfies the following equality:

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})$$

for all x, y in V.

- **b)** (i) Show that the polynomial $f(x) = 2x^4 + 6x^3 9x^2 + 15$ is irreducible over \mathbb{Z} .
 - (ii) Find all possible non-similar 4×4 real matrices with minimal polynomial x^2 .

(iii) Let T be a linear operator on a complex inner product space V. Define T^* (*adjoint of* T). For any scalar c, prove that $(c T)^* = \overline{c}T^*$.

(iv) Prove that every Euclidean domain is a principal ideal domain.

END